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ABSTRACT 
Often a statistical test is performed in which the observed 
outcome favors the alternative but the evidence in favor of the 
alternative is not statistically significant.  Suppose that, for 
example, a researcher tests the hypothesis that the mean is 10 
versus the alternative is less than 10 using a z-test.  Suppose 
further that based on a sample of size 8, the p-value is 0.078 
(hence the null hypothesis is not rejected with level of significance 
0.05 ). Given the observed mean (X-bar) how large would the 
sample have to have been in order for the hypothesis to be 
rejected?  An n-values plot can be used to answer this question. 
This plot has vertical axis n (sample sizes) and horizontal axis 
alpha (level of significance). Points forming an n-values line 
containing combinations of (alpha, n) with the minimum n required 
to rejected at alpha are plotted.  A horizontal line at n =8 in this 
example would be plotted (the n-values line will intersect the n = 8 
line at alpha = 0.078. Using the plot one can “see” that a sample 
of size 11 would have rejected at level of significance 0.05.  SAS 
macros for generating plots for various commonly used tests will 
be presented.  
 

INTRODUCTION  
Several macros will be presented that can be used to produce n-
values plots.  The following test will be considered: one-sample z-
test and t-test for a mean; one sample z-test for a proportion; 
ANOVA F-test for two or more means; and 2 by 2 table tests. 

ONE SAMPLE Z-TEST AND PROTOTYPE 
Consider the standard z-test for the mean.  The one sided 
hypothesis is 
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where 0µ is the hypothesized mean.  Suppose for example that 
one wishes to test the hypothesis that the average diameter of a 
widget is 10mm versus the alternative that the average diameter 
is less than 10 mm.  Then the hypothesis becomes 
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The z-test is appropriate whenever the parent population is 
normal with known variance 2σ .  Suppose that in this example 
the standard deviation is known to be  3mm. Suppose that a 
random sample ( iX distributed ),( 2σµNID ) of size 8=n is 
selected from the population of widgets and the sample mean is 
8.5mm (that is, 5.8=X ).  The z-statistic is 
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and the p-value is 0.07865.  Note that the investigator will not 
reject the null hypothesis at level of significance 05.0=α since 
the p-value is not less than alpha (or equivalently, z is not less 
than 645.105. −=−=− zzα ).  This interpretation of the sample 
mean of 8.5 as being insufficiently small to reject (2) is dependent 
on the sample size. Had the same result obtained with a larger 

sample size the decision may have been different. How large 
would n have to be in order for the observed mean to be 
sufficiently small to lead to rejection of (2)?  Simple algebraic 
manipulation of (3) produces  
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Then, a sample of size 11 would have been sufficient to reject (2) 
with a sample mean of 8.5mm. A more interesting result is 
produced by an n-vales plot (see Figure 1) in which the pairs 
( )n,α derived from equation (4) are plotted. The n-values line 
identifies the minimum sample size required (treating n as 
continuous) to reject the null hypothesis at level of significance 
alpha.  Note that the line relating alpha and the sample size is 
downward sloping, indicating the well known fact that rejecting the 
null hypothesis at a low alpha requires a larger sample size than 
rejecting with a higher alpha.     

 

Figure 1: N-Values Plot For One Sided Z-Test Example 

The macro that produces Figure 1 also produces the output 
below, which for reference outputs the test statistic (-1.41421) and 
the test p-value (0.07865).  The variable n_size identifies the 
sample size to reject the null hypothesis at a specified level of 
significance.  For example, rejection at 0.025 would require a 
sample of size 16.  

 
 

 
Interpretation of the n-values plot 

Classical statistical decision theory suggests choosing alpha prior 



 

 

to performing the analysis. Typically today researchers employ p-
values. When the observed outcome of an experiment favors the 
alternative, but does not indicate statistical significance, the n-
values plot expresses the outcome of a mind experiment in which 
one supposes that new data consistent with what has been 
observed can be generated.  The restriction on the mind 
experiment is that the statistic on which the test is based remains 
invariant. That is, in this example, the sample mean is still 8.5mm 
but the interpretation of this observed value is conditioned on the 
sample size.  

In contrasts with power studies (curves) the n-values 
plot is based on the null-distribution (whereas the latter is based 
on various non-null distributions). 

The n-values plot quantifies statements such as: “The 
results were nearly significant” by supplying a sample size at 
which significance would, ceteris paribus, lead to rejection.  This 
approach  is consistent with current analyses in which models are 
ranked by p-values. 
 
Two sided z-test 

Many times, statistical tests are conducted to see if the observed 
mean is different (either greater than or less than) the 
hypothesized mean.  The two-sided hypothesis for this case is  
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In this case, the z-statistic is still calculated using the formula (3).  
However, the p-value changes since this z-statistic is no longer 
being compared to 

αz but to 
2/αz .  For example, suppose that in 

the same study of average widget diameter, the experimenter 
wishes to test the hypothesis that the average diameter is 10mm 
versus the alternative that the average diameter is not 10mm, the 
hypothesis becomes 
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The z-statistics remains –1.414 as calculated is (3). However, the 
p-value now changed to .1573. Again, the null hypothesis will not 
be rejected at the α=.05 level of significance since  the p-value is 
not less than alpha (or the z statistics is not less than 

96.12/ −=− αz ) . To determine how large an n would be required 
to reject the null hypothesis in a two tailed test, equation (4) 
changes to 
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Thus showing that a sample of size 16 would be sufficiently large 
to reject the null hypothesis for this two-tailed test. Note that the 
only difference between equation (4) and equation (7) is the z-
value used in the computation.  Because 

2/αz is always smaller 

than 
αz , the n-value required for the two-tailed test is always 

larger than that required for the one tailed test.  A plot of the n-
values shows how large of an n is required for the test to be 
significant at a given alpha.   
 

 
Figure 2: N-Values Plot For Two Sided Z-Test Example 

ONE SAMPLE t-TEST 
In situations where the population is normal, but the population 
variance ( 2σ ) is unknown, a z-test no longer an appropriate test 
for the equality of the mean to some target value.  However, a t-
test based on  s2 (the sample variance) is appropriate.  The t-test 
statistic depends on the number degrees of freedom (n-1) as well 
as the level of significance.  
 
One sided t-test 

Returning to the previous example, suppose the population 
variance of widgets is unknown. The experimenter selects a 
sample of n=8 widgets. He calculates the sample mean and 
standard deviation of these 8 widgets to be 8.5 and 3, 
respectively.  A t-test is now appropriate. Suppose the hypotheses 
are the same as in (2).  The t statistic is now calculated using the 
formula 
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The test statistic is (coincidentally) the same as in the z-test; 
however, the p-value now becomes .1001. At the α=.05 level of 
significance, there is not enough evidence to support the 
alternative hypothesis.   Equivalently, 414.1−=t  is not less 
than 895.17,05. −=t .  To determine how large a sample would 

have been necessary for a sample mean of 8.5 to be significant, 
equation (4) becomes   
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So a sample of size 15 would be sufficient for the findings to be 
significant at the .05 level (provided the same sample mean and 
variance were unchanged).  An n-values plot of the sample size 
versus the significance level shows the sample size required for a 
hypothesis to be significant at a given alpha. 
 

 



 

 

Figure 3: N-Values Plot For One Sided T-Test Example 
 
More detail can be found in the tabular output, which also 

 

 
shows that a sample of 15 would be sufficient to reject the 
hypothesis that the population mean is 10mm. 
 
Two sided t-test 

Similarly to the z-test, for the two sided alternative equation (9) 
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This formula yields an n of 22.37 for our example, meaning that 
for the observed sample mean of 8.5 to be statistically different 
than the hypothesized mean of 10, a sample of 23 would be 
required as seen in the n-values plot.  

 
Figure 4: N-Values Plot For Two Sided T-Test Example 
 
From the graph (Figure 4) the sample size required to reject 
appears to be around 22 or 23.  The tabular output reveals that 23 
widgets would be required. 
 

 
 

 
 
 
Paired T-Test 

For the paired t-test use the differences and this reduces to the 
previous one sample cases. 

SAS MACRO FOR ONE SAMPLE TESTS ON THE 
MEAN 
The actual macro statement to produce Figure 4 is: 
%nvalues1(n = 8, x_bar = 8.5, sigmaX = 3,  

nullmean = 10, sided =2,testtype =2); 
 

The macro identifies the sample size, the sample mean, the 
known (or estimated) standard deviation, the hypothesized mean, 
a coded sided-variable that identifies the test as less than, equal 
to, or greater than, and a coded testtype variable that specifies 
the test as a z-test or t-test. 
 
%macro nvalues1( 
    n = ,  
 x_bar =,  
 sigmaX =,  
 nullmean = ,  
 sided =,  /* 1 = <, 2 not = , 3 = > */ 
 testtype = /* 1 = z-test, 2 = t-test */) 
;  
data plotdat; 
If &sided = 1 and &x_bar > &nullmean  

then put '****sample mean does not favor 
alternative: plot invalid************'; 

If &sided = 3 and &x_bar < &nullmean  
then put '*****sample mean does not favor 
alternative: plot invalid************'; 

do alpha = .005 to .20 by .005; 
 
%local sidenum; 
%local sign; 
 
 
%if &sided=1 or &sided=3 %then %let sidenum=1; 
%if &sided=2 %then %let sidenum=2; 
 
%if &sided=1 %then %let sign=<; 
%if &sided=2 %then %let sign= not =; 
%if &sided=3 %then %let sign=>; 
 
%if &testtype=1 %then %let testsym = z; 
%if &testtype=2 %then %let testsym = t; 
 
teststat = (&x_bar-&nullmean)*sqrt(&n)/&sigmax; 
if &testtype=1 and &sided = 1  
 then pvalue = probnorm(teststat); 
if &testtype=1 and &sided = 3  
 then pvalue = 1-probnorm(teststat); 
if &testtype=1 and &sided = 2  



 

 

then pvalue = 2*min(probnorm(teststat),1-
probnorm(teststat)); 

 
if &testtype=2 and &sided = 1  
 then pvalue = probt(teststat,&n-1); 
if &testtype=2 and &sided = 3  
 then pvalue = 1-probt(teststat,&n-1); 
if &testtype=2 and &sided = 2  

then pvalue = 2*min(probt(teststat,&n-
1),1-probt(teststat,&n-1)); 

n_sample = &n; 
dft = n_sample-1; 
 
if &sided = 2 then z_alpha = probit(alpha/2); 
 else z_alpha = probit(alpha); 

if &sided = 2 then t_alpha = tinv(1-
alpha/2,dft); 

 else t_alpha = tinv(1-alpha,dft); 
If &testtype = 1 then nplot = 
((&sigmaX*z_alpha)/(&x_bar-&nullmean))**2; 
 else if &testtype = 2  
  then nplot = 
((&sigmaX*t_alpha)/(&x_bar-&nullmean))**2; 
 else nplot = 0; 
n_size = floor(nplot)+1; 
output; 
end; 
proc gplot; 
 plot nplot*alpha = 1 n_sample*alpha =2 / 
overlay legend; 
 symbol1 c=BLUE,i=join, l=1, v=none; 
        symbol2 c=BLACK, i=join, l=14, v=none; 
title "n-values plot for &testsym test"; 
title2 "&sidenum sided test for mu = &nullmean 
versus mu &sign &nullmean; n = &n"; 
run; 
 
proc print data = plotdat; 

var alpha nplot n_size t_alpha teststat 
pvalue; 

title " n-values plot for &testsym test"; 
title2 "&sidenum sided test for mu = &nullmean 
versus mu &sign &nullmean; n = &n"; 
 
run; 
%mend nvalues1; 
 

ONE SAMPLE TEST FOR A PROPORTION 
When the parameter under study is a proportion an exact test 
based on the binomial distribution or a large sample z-test can be 
performed to test whether the proportion is equal to some target 
value (p). We will present only the latter. The decision is based on 
the observed proportion ( p̂ ).  In this case, if performing a one 
sided test, the hypotheses in (1) change to 
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And if performing a two sided test, the hypotheses in (5) becomes 
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To determine how large of a sample must be used for the findings 
to show a significant difference, the formula for a one sided test 
(4) changes to  
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because the  for variance of the sample proportion is proportional 
to  pq ,  where p is the population proportion and q  = 1-p.  
If the test is a two-sided test, then formula (13) becomes 
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Note, that again the only difference between the formulas for a 
one sided and two sided test, (13) and (14), is the z-value (tail 
area)  

For example, suppose that when studying the widgets, 
our experimenter desires to test the hypothesis that more then 
20% of widgets have diameters less than 10mm.  He takes a 
sample of 30 widgets, and finds that 9 are less than 10mm in 
diameter. The hypotheses are  
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The z-value associated with this test is computed by 
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At the .05 level of significance, the result is not significant, since 
the associated p-value of .08545 is not less than .05.  To 
determine how large an n would have been necessary to obtain a 
significant result, we use formula (13).  
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This (see also the tabular output below) shows that a sample of 
44 would be necessary for the observed proportion to lead to 
rejection of the null hypothesis.  The n-values plot (see Figure 5) 
shows how large of a sample would be necessary to obtain 
significance at a given alpha value.  

 

Figure 5: n-Values Plot for Proportion z-Test Example 

The non-graphical output can be used to focus in on details: 



 

 

 
 
Macro for test on a Single Proportion 

This macro statement produces the above output: 
 
%nvaluesp1(n = 30, p_hat = .30,   
  nullprop = .20, sided =3 ); 
The macro code follows: 
%macro nvaluesp1( 
    n = ,  
 p_hat =,/*sample proportion*/  
 nullprop = , /*hypothesized proportion*/  
 sided =,  /* 1 = <, 2 not = , 3 = > */ 
 ) ;  
data plotdat; 
If &sided = 1 and &p_hat > &nullprop  
 then put '****sample proportion does 

not favor alternative: plot 
invalid************'; 

If &sided = 3 and &p_hat < &nullprop  
 then put '*****sample proportion does 

not favor alternative: plot 
invalid************'; 

do alpha = .005 to .20 by .005; 
 

n_sample = &n; 
 

p= &nullprop; 
q = 1-p; 
variance=p*q; 
stdev=sqrt(variance); 
%local sidenum; 
%local sign; 

 
%if &sided=1 or &sided=3  

%then %let sidenum=1; 
%if &sided=2  

%then %let sidenum=2; 
 

%if &sided=1  
%then %let sign=<; 

%if &sided=2  
%then %let sign= not =; 

%if &sided=3  
%then %let sign=>; 

 

if &sided = 2 then z_alpha = probit(alpha/2); 
 else z_alpha = probit(alpha); 
nplot = ((stdev*z_alpha)/(&p_hat-p))**2; 
 
n_size = floor(nplot)+1; 
output; 
end; 
proc gplot; 
 plot nplot*alpha = 1 n_sample*alpha =2 / 
overlay legend; 
 symbol1 c=BLUE,i=join, l=1, v=none; 
        symbol2 c=BLACK, i=join, l=14, v=none; 
title "n-values plot for Z test"; 
title2 "&sidenum sided test for p = &nullprop 
versus p &sign &nullprop; n = &n"; 
run; 
 
proc print data = plotdat; 
 var alpha nplot n_size z_alpha; 
title " n-values plot for z test"; 
title2 "&sidenum sided test for mu = &nullprop 
versus p &sign &nullprop; n = &n"; 
run; 
   %mend nvaluesp1; 

TESTS ON SEVERAL MEANS 
Suppose that one is testing the hypothesis that the means of 
three populations are equal, and that the test is to be based on 
three independent samples of size n = 5 (for each treatment).  
The data below illustrates the idea. 

treat 1 treat 2 treat 3 
5 11 5 
7 12 6 
4 6 6 
6 5 5 
9 10 8 

An Anova F-test yields 
Table 1: ANOVA F-Table (sample size 5) 

 
 
 
The p-value is too large to reject the null hypothesis at alpha = 
0.05.  Suppose that the sample were twice as large and in fact 
consisted of a replicate of the original sample. 

Treat 1 treat 2 treat 3 
5 11 5 
7 12 6 
4 6 6 
6 5 5 
9 10 8 
5 11 5 



 

 

7 12 6 
4 6 6 
6 5 5 
9 10 8 

The ANOVA F-Test on this data set produces 
Table 2: ANOVA F-Table (sample size  10 

 
 
 
Of course, the averages are the same.  The p-value is less than 
0.05, and hence, this mind experiment suggests that a sample of 
size 10 (instead of 5) would lead to rejection of the null 
hypothesis.  An n-values plot can be generated based on this 
reasoning. Identify this as the Replicate Sample Approach (SRA). 
A simple mathematical relationship connects the two F statistics 
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where the subscript on the F statistic refers to the sample size 
and t is the multiple by which the sample size is altered. 
 
SAS ANOVA-F Macro Output  

The SAS macro statement 
 
%nvalanova(n = 5, k=3,F = 2.4564); 
 
produces the graph in Figure 6 and the output 
below. 

  
Figure 6: N-Values Plot For ANOVA F-test Example 
 
Observe that the graph indicates that a sample of size about 7 
would be sufficient.  The tabular output indicates that for n=7 the 
corresponding p-value is 0.04557, which is significant at alpha = 
0.05.  Note that for n =10 the F-statistic is 5.5269.  
 

 
 
ANOVA-F n-Values Macro 

The macro statement that produced the n-values plot seen in 
Figure 6 is 
 
%nvalanova(n = 5, k=3,F = 2.4564); 
 
This macro requires the sample size used in the study, the 
number of treatment levels, and the F-statistic computed for the 
test. 
 
/**************************** 
n-values plot for multiple mean comparisons 
using ANOVA 
*****************************/ 
 
%macro nvalanova( 
    n = ,  
 k = , 
 F =  
 ) ;  
data plotdat; 
numdf = &k-1; 
 
mult = 5; 
nmult = mult*&n; 
do nvalue = 2 to nmult; 
 n_sample = &n; 
 denomdf = (nvalue-1)*&k; 
 F = &F*(nvalue - 1)/(n_sample-1); 
 alpha_n =1- probf(f,numdf,denomdf); 
output; 
end; 
proc sort data=plotdat; by alpha_n; 
proc print; var nvalue F alpha_n; 
title "n-values plot for ANOVA F Test"; 
title2 "k = &k   n = &n   Test F = &F  "; 
proc gplot; 
 plot nvalue*alpha_n =1 n_sample*alpha_n = 
2 / overlay legend; 
 symbol1 c=BLUE,i=join, l=1,  

v=none; 



 

 

        symbol2 c=BLACK, i=join, l=14, v=none; 
title "n-values plot for ANOVA F Test"; 
title2 "k = &k   n = &n   Test F = &F  "; 
run; 
   %mend nvalanova; 

TABLE TESTS 
Tables arise in the analysis of categorical data.  Only 2 by 2 
tables will be considered in this paper. The ideas extend naturally 
to 2 by S and other tables. Consider a test for the effectiveness of 
a DRUG with the following results. 

 Fav UnFav SUMS %Fav 
Test 23 37 60 38.33% 

Placebo 16 48 64 25.00% 
SUMS 39 85 124  

The design is one in which subjects are randomized between 
placebo and test groups.  One method of analysis is to calculate a 
Chi-squared statistic.  We will look at the statistic Q (the one 
identified as the Mantel-Haenszel Chi-Square in SAS output from 
PROC FREQ).  See for example Stokes, Davis, and Koch (2000) 

for a complete discussion). Denoting the cell counts by ijn , the 

row sums by ir and the column sums by jc , the statistic Q is 
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Note that 

2121 ccrrn +=+=  
is the (total) sample size, and the row sums represent the number 
of test and placebo subjects respectively. Given the study results 
the hypothesis that the response rates are different for the two 
groups cannot be rejected at the 5% level since Q = 2.533 (p-
value = .1115). Note that the observed rates for favorable 
response are 38.33% for the treatment group and 25% for the 
placebo group.   
 The question is: were these rates to hold for a larger 
sample, how large would that sample have to be in order to arrive 
at a significant result?  The notion of larger sample needs to be 
pinned down.  One notion would be to increase on the number of 
subjects in the test group.  Another would be to increase the total 
number of subjects.  First, we will examine increasing the test 
subjects only.  Letting the proportion responding favorably remain 

constant, and changing 1r to *
1r the cell counts become  
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Hence, 
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Then the calculation of Q follows from: 
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The p-value (alpha) is given by  
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The n-values plot can take two forms, depending on whether the 
vertical axis is the sample size for the test group or the total 
sample size; that is, the pairs:  
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are plotted. The circumstance in which both the test and placebo 
groups increase in size can be handled by allocating each 
increase in n between the two groups according to the proportions 
arising in the study( in this example, 60/124 for the test group).  
Alternatively any proportion of interest can be used. Note that 
when both test and placebo groups are increased all of the cell 
counts are altered (proportionately).  The Pearson Chi-squared is  
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so an n-values plot for this test statistics is easy to produce. 
 
Tables SAS Macro Output 

The macro statement that produced the n-values plot seen in 
figure 10 is 
 
%nvaltables(n11=23,n12=37,n21=16,n22=48, 

increase=2,stat=1,prop=0); 
 
In this macro statement, the four table values are identified as the 

ijn . The increase variable indicates whether to increase the n-

value of the test group only or both groups. The stat variable 
indicates whether the Q or Qp statistic should be used as the test 
statistic. Lastly, the proportion of n to be allocated to the test and 
placebo groups is needed (it will default to the proportion 
previously in the study if set to zero). 

 

Figure 7: N-Values Plot for Table Test 

From the plot (see Figure 7) it is apparent that a substantial 
increase in the sample size would be needed for the observed 
difference in the proportion to be significant at the 5% level. The 



 

 

non-graphical output clarifies the analysis.  Note that about 188 
subjects would have to be enrolled in the study to reject the no 
effect hypothesis. 
 

 
 

 
 

 
 
It is interesting to compare this approach to one in which only the 
test group sample size is increased.  The macro becomes: 
%nvaltables(n11=23,n12=37,n21=16,n22=48,increase
=1,stat=1,prop=0); 
 
producing the output below. 
 

 

 

 
 
In this case the sample size needed is about 283. This is an 
increase in 159 test subjects.  On the other hand, increasing both 
the test and placebo groups from a test-group  n of 60 to a test-
group n of 91 and the placebo-group from 64 to 97, for an crease 
of 65 or so, is associated with a significant result..  
 
Tables SAS Macro 

/******************************** 
n-values plot for tables test 
**********************************/ 
 
%macro nvaltables( 
     n11 = ,  
 n12 = , 
 n21 = , 
 n22 = , 

increase = , /* 1=test group , 2=both  
groups */ 

 stat = , /* 1=Q , 2=QP */ 
 prop = /*proportion of addition subjects  

added = 0 to use study prop. or  
if entered 1 for increase */ 

 ) ;  

data plotdat; 
n_sample = &n11 + &n12+ &n21 + &n22; 
 c1 = &n11 + &n21; 
 c2 = &n12 + &n22; 
 r1 = &n11 + &n12; 
 r2 = &n21 + &n22; 
%local inc_name; 
%local stat_name; 
 
%if &increase=1 %then %let inc_name=test group 
only; 
%if &increase=2 %then %let inc_name=both groups; 
%if &stat=1 %then %let stat_name = Q; 
%if &stat=2 %then %let stat_name=Qp; 
 
prop2=&prop; 
if &prop =0 then prop2=.5; 
 
do  npct_inc = -50 to 300 by 2; 
  
 if &increase=1 then  

n11_new=&n11*(1+npct_inc/100); 
 if &increase=1 then  

n12_new=&n12*(1+npct_inc/100); 
 if &increase=1 then n21_new=&n21; 
 if &increase=1 then n22_new=&n22; 
 if &increase=1 then  

r1_new=n11_new+n12_new; 
 if &increase=1 then r2_new=r2; 
 
 if &increase=2 then n11_new =  

&n11*(1+npct_inc/100)*prop2; 
 if &increase=2 then n12_new =  

&n12*(1+npct_inc/100)*prop2; 
 if &increase=2 then  

n21_new=&n21*(1+npct_inc/100)*(1-
prop2); 

 if &increase=2 then n22_new  
=&n22*(1+npct_inc/100)*(1-prop2); 

 if &increase=2 then  
r1_new=n11_new+n12_new; 

 if &increase=2 then  
r2_new=n21_new+n22_new; 

 
 c1_new = n11_new + n21_new; 
 c2_new = n12_new + n22_new; 
 n=c1_new+c2_new; 
 
 m11 = (r1_new*c1_new)/n; 
 v11 =(r1_new*r2_new*c1_new*c2_new) 

/(n**2*(n-1)); 
 Q=(n11_new-m11)**2/v11; 
 
 if &stat=1 then alpha_n=1-probchi(Q,1); 
 if &stat=2 then alpha_n=1-probchi(n/(n- 

1)*Q,1); 
output; 
end; 
proc print; var n n11_new n12_new n21_new  

n22_new alpha_n; 
title "n-values plot for Tables test"; 



 

 

title2 "Increasing &inc_name using &stat_name 
statistic"; 
 
proc gplot; 
 plot n*alpha_n = 1 n_sample*alpha_n =2 / 
overlay legend; 
 symbol1 c=BLUE,i=join, l=1, v=none; 
        symbol2 c=BLACK, i=join, l=14, v=none; 
title "n-values plot for Tables test"; 
title2 "Increasing &inc_name using &stat_name 
statistic"; 
run; 
run; 
   %mend nvaltables; 
 

OTHER TESTS 
The methods offered in this paper can be extended to an 
assortment of tests. 

CONCLUSION 
The n-values plots in this paper can be useful in data analysis. 
The most natural area of application is in circumstances in which 
the test statistics does not clear the hurdle of statistical 
significance but does at least suggest the existence of some 
effect of difference. The plot offers insight into the sample size 
required, ceteris paribus, to reach statistical significance.  Along 
with other analyses, including, retrospective and other power 
studies, n-values plots can be used to plan additional studies and 
sampling. 
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